Rzdfine.ru

РЖД Финанс
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как решать логические и математические задачи

Чтобы научиться решать типовые логические задачи, простые и нестандартные математические задачи, важно знать основные приемы и методы их решения. Ведь решить одну и ту же задачу и прийти к правильному ответу во многих случаях можно разными способами.

Знание и понимание различных методов решения поможет определить, какой способ подойдет лучше в каждом конкретном случае, чтобы выбрать наиболее быстрый и простой путь получения ответа.

К «классическим» логическим задачам относятся текстовые задачи, цель решения которых состоит в распознавании объектов или расположении их в определенном порядке в соответствии с заданными условиями.

Более сложными и увлекательными типами заданий являются задачи, в которых отдельные утверждения являются истинными, а другие ложными. Задачи на перемещение, перекладывание, взвешивание, переливание — самые яркие примеры широкого ряда нестандартных задач на логику.

Наш короткий видеоурок по расчету реакций опор балки:

Примеры решения задач по расчету стержней, балок и валов на прочность.
Подбор сечений, проверка на прочность и определение грузоподъемности.

Примеры построения эпюр внутренних усилий, напряжений и перемещений при растяжении-сжатии, кручении, изгибе и других видах деформации.

Примеры расчетов нормальных, касательных и главных напряжений при различных видах деформации. Рассмотрены аналитические и графический способ (круг Мора) определения напряжений.

Примеры расчетов деформации бруса при различных видах нагружения.

Линейная алгебра: примеры решения задач

Рассмотрим несколько простейших задач из курса линейной алгебры.

Пример 1. Вычислить определитель а) по формуле Саррюса и б) путем разложения по элементам строки: .
Решение:
а)

б)
Ответ: Δ = 12 .

Пример 2. Даны две матрицы и . Требуется найти матрицу C = A + 4B .
Решение:

Ответ: .

Пример 3. Решить СЛАУ, используя формулы Крамера:
Решение:
Формулы Крамера:

Вычислим все необходимые определители:

Пример 4. Решить СЛАУ методом обратной матрицы:
Решение:
Запишем систему уравнений в матричном виде:

Решение уравнения найдем по формулам:

Найдем обратную матрицу:

— обратная матрица к A.

Ответ:

Другие статьи по данной теме:

  • назад:Абсолютные и относительные величины в статистике. Примеры решения задач
  • далее:Показатели вариации: понятие, виды, формулы для вычислений. Примеры решения задач

Список использованных источников

  1. Белобородова С.С. и др. Теория статистики: Типовые задачи с контрольными заданиями. Екатеринбург: Изд-во Урал. гос. экон. ун-та, 2001;
  2. Минашкин В.Г. и др. Курс лекций по теории статистики. / Московский международный институт эконометрики, информатики, финансов и права. — М., 2003;
  3. Сизова Т.М. Статистика: Учебное пособие. – СПб.: СПб ГУИТМО, 2005;
  4. Фёдорова Л.Н., Фёдорова А.Е. Методические указания по написанию контрольной работы по курсу «Статистика» для студентов экономических специальностей: УрГЭУ, 2007;

2012 © Лана Забродская. При копировании материалов сайта ссылка на источник обязательна

Закон Гесса как основной закон термохимии и примеры расчетов с его использованием

Закон Гесса констатирует:Рассмотрим классический пример.

При экзотермическом взаимодействии углерода (графита) и кислорода образуется углекислый газ. У этого процесса есть два возможных пути: напрямую или через промежуточную стадию, идущую с образованием угарного газа (оксида углерода (II)):

zakon-gessa-formula-reshenie-zadach

При прямом процессе, идущем непосредственно с образованием углекислого газа, выделяется 393,5 кДж энергии:

zakon-gessa-formula-reshenie-zadach

Если процесс взаимодействия графита с кислородом идет в две стадии, то каждая из них также сопровождается выделением энергии:

Читать еще:  Уведомление на уплату налога транспортного земельного имущественного не пришло

zakon-gessa-formula-reshenie-zadach

Просуммируем эти два уравнения:

zakon-gessa-formula-reshenie-zadach

Получаем то же, что и в первом случае (то есть при прямом взаимодействии графита с кислородом): выделяется 393,5 кДж энергии.

Таким образом, результат реакции совершенно не зависит как от пройденного пути, так и от количества промежуточных стадий. Важными оказываются состояния веществ: начальное и конечное.

Прежде, чем рассмотреть примеры расчетов, в которых используется формула закона Гесса, необходимо сделать некоторые уточнения:

1) результаты термохимических расчетов (и измерений) всегда относят к одному молю вещества, которое образуется в ходе реакции;

2) теплота образования – это количество теплоты, выделяющееся при реакции простых веществ с образованием 1 моля продукта;

3) теплоты образования простых веществ принимают за ноль;

4) если прямой процесс является экзотермическим, то обратный будет эндотермическим, и наоборот.

Пример 1.

zakon-gessa-formula-reshenie-zadach

Запишем термохимические уравнения реакций, о которых идет речь:

zakon-gessa-formula-reshenie-zadach

Представим уравнение (2) так, чтобы СО стал конечным продуктом реакции, а не исходным веществом. Для этого запишем уравнение в обратном виде. Теплота сгорания по знаку в таком случае станет противоположной:

zakon-gessa-formula-reshenie-zadach

Для получения ответа на вопрос задачи (по закону Гесса) просуммируем уравнения (1) и (2):

 zakon-gessa-formula-reshenie-zadach

Таким образом, при сгорании углерода с образованием угарного газа выделяется 110,5 кДж энергии.

zakon-gessa-formula-reshenie-zadach

Пример 2.

В реакции, для которой требуется вычислить теплоту:

  • участвуют 1 молекула этилена и 6 молекул фтора;
  • образуются 2 молекулы тетрафторуглерода и 4 молекулы фтороводорода.

— в первой из данных по условию реакций все коэффициенты и теплоту реакции умножим на 2, чтобы получить 4 молекулы фтороводорода;

— во второй реакции также все коэффициенты и теплоту реакции умножим на 2, чтобы получить 2 молекулы тетрафторуглерода;

— уравнение третьей реакции запишем в обратном виде, чтобы этилен стал исходным веществом, а не продуктом реакции;

— изменим знак теплоты третьей реакции на противоположный, так как ее уравнение записываем в обратном виде.

Просуммируем все уравнения:

 zakon-gessa-formula-reshenie-zadach

Таким образом, теплота реакции этилена с фтором ΔН= -2486,3 кДж.

Базовые алгоритмические конструкции

В теории программирования доказано, что для записи любого, сколь угодно сложного алгоритма достаточно трех базовых структур:

  • следование (линейный алгоритм);
  • ветвление (разветвляющийся алгоритм);
  • цикл-пока (циклический алгоритм).

Линейные алгоритмы

Линейный алгоритм образуется из последовательности действий, следующих одно за другим. Например, для определения площади прямоугольника необходимо сначала задать длину первой стороны, затем задать длину второй стороны, а уже затем по формуле вычислить его площадь.

alt

Пример

ЗАДАЧА. Разработать алгоритм вычисления гипотенузы прямоугольного треугольника по известным значениям длин его катетов a и b.

На примере данной задачи рассмотрим все три этапа разработки алгоритма решения задачи:

Этап 1. Математическое описание решения задачи.

Математическим решением задачи является известная формула:

Формула,

где с-длина гипотенузы, a, b – длины катетов.

Этап 2. Определение входных и выходных данных.

Входными данными являются значения катетов a и b. Выходными данными является длина гипотенузы – c.

Этап 3. Разработка алгоритма решения задачи.

  1. Начало алгоритма.
  2. Ввод значений длин катетов a и b.
  3. Вычисление длины гипотенузы с по формуле Формула
  4. Вывод значения длины гипотенузы.
  5. Конец алгоритма

На данной схеме цифрами указаны номера элементов алгоритма, которые соответствуют номерам пунктов словесного описания алгоритма.

Блок-схема

Разветвляющиеся алгоритмы

Алгоритм ветвления содержит условие, в зависимости от которого выполняется та или иная последовательность действий.

Читать еще:  Может ли работодатель отказать в отпуске?

Алгоритм ветвления

Пример

ЗАДАЧА. Разработать алгоритм вычисления наибольшего числа из двух чисел x и y.

Этап 1. Математическое описание решения задачи.

Из курса математики известно, если x > y, то наибольшее число x, если x < y, то наибольшее число y, если x = y, то число x равно числу y.

Этап 2. Определение входных и выходных данных.

Входными данными являются значения чисел x и y. Выходным данными являются:

  • наибольшее число
  • любое из чисел, если числа равны

Для решения задачи нам необходимо знать значения x и y.

Этап 3. Разработка алгоритма решения задачи.

  1. Начало алгоритма.
  2. Ввод значений x и y.
  3. Сравниваем x и y. Если x = y, то переход к шагу 4, иначе к шагу 5.
  4. Вывод информации: числа x и y равны. Переход к шагу 8.
  5. Сравниваем x и y. Если x > y, то переход к шагу 6, иначе к шагу 7.
  6. Вывод информации: число x больше y. Переход к шагу 8.
  7. Вывод информации: число y больше x. Переход к шагу 8.
  8. Конец алгоритма.

блок-схема

В схеме алгоритма решения задачи цифрами указаны номера элементов алгоритма, которые соответствуют номерам шагов словесного описания алгоритма

В рассматриваемом алгоритме (рис.3) имеются три ветви решения задачи:

  • первая: это элементы 1, 2, 3, 4, 8.
  • вторая: это элементы 1, 2, 3, 5, 6, 8
  • третья: это элементы 1, 2, 3, 5, 7, 8.

Выбор ветви определяется значениями x и y в элементах 3 и 5, которые являются условиями, определяющими порядок выполнения элементов алгоритма. Если условие (равенство), записанное внутри символа «решение», выполняется при введенных значениях x и y, то следующими выполняется элементы 4 и 8. Это следует из того, что они соединены линией с надписью «да» и направление (последовательность) вычислений обозначена стрелочкой.

Если условие в элементе 3 не выполняется, то следующим выполняется элемент 5. Он соединен с элементом 3 линией с надписью «нет». Если условие, записанное в элементе 5, выполняется, то выполняется элементы 6 и 8, в противном случае выполняются элементы 7 и 8.

Циклические алгоритмы

Циклический алгоритм определяет повторение некоторой части действий (операций), пока не будет нарушено условие, выполнение которого проверяется в начале цикла. Совокупность операций, выполняемых многократно, называется телом цикла.

Циклический алгоритм

Алгоритмы, отдельные действия в которых многократно повторяются, называются циклическими алгоритмами, Совокупность действий, связанную с повторениями, называют циклом.

При разработке алгоритма циклической структуры выделяют следующие понятия:

  • параметр цикла – величина, с изменением значения которой связано многократное выполнение цикла;
  • начальное и конечное значения параметров цикла;
  • шаг цикла – значение, на которое изменяется параметр цикла при каждом повторении.

Цикл организован по определенным правилам. Циклический алгоритм состоит из подготовки цикла, тела цикла и условия продолжения цикла.

Циклический алгоритм

В подготовку цикла входят действия, связанные с заданием исходных значений для параметров цикла:

  • начальные значения цикла;
  • конечные значения цикла;
  • шаг цикла.

В тело цикла входят:

  • многократно повторяющиеся действия для вычисления искомых величин;
  • подготовка следующего значения параметра цикла;
  • подготовка других значений, необходимых для повторного выполнения действий в теле цикла.

В условии продолжения цикла определяется допустимость выполнения повторяющихся действий. Если параметр цикла равен или превысил конечное значение цикла, то выполнение цикла должно быть прекращено.

Читать еще:  Может ли иностранец купить недвижимость в Беларуси?

Пример

ЗАДАЧА. Разработать алгоритм вычисления суммы натуральных чисел от 1 до 100.

Этап 1. Математическое описание решения задачи.

Обозначим сумму натуральных чисел через S. Тогда формула вычисления суммы натуральных чисел от 1 до 100 может быть записана так:

сумма натуральных чисел

где Xi – натуральное число X c номером i, который изменяется от 1 до n, n=100 – количество натуральных чисел.

Этап 2. Определение входных и выходных данных.

Входными данными являются натуральные числа: 1, 2, 3, 4, 5, …, 98, 99, 100.

Выходные данные – значение суммы членов последовательности натуральных чисел.

Параметр цикла величина, определяющая количество повторений цикла. В нашем случае i – номер натурального числа.

Подготовка цикла заключается в задании начального и конечного значений параметра цикла.

  • начальное значение параметра цикла равно 1,
  • конечное значение параметра цикла равно n,
  • шаг цикла равен 1.

Для корректного суммирования необходимо предварительно задать начальное значение суммы, равное 0.

Тело цикла. В теле цикла будет выполняться накопление значения суммы чисел, а также вычисляться следующее значение параметра цикла по формулам:

Условие продолжения цикла: цикл должен повторяться до тех пор, пока не будет добавлен последний член последовательности натуральных чисел, т.е. пока параметр цикла будет меньше или равен конечному значению параметра цикла.

Этап 3. Разработка алгоритма решения задачи.

Введем обозначения: S – сумма последовательности, i – значение натурального числа.

Начальное значение цикла i=1, конечное значение цикла i =100, шаг цикла 1.

  1. Начало алгоритма.
  2. Подготовка цикла: S:=0; i=1; n= 100;
  3. Проверка условия. Если i <=n , то перейти к шагу 4, иначе к шагу 6.
  4. Накопление суммы: S:=S+i;
  5. Вычисление следующего значения параметра цикла: i:=i+1;
  6. Вывод информации: сумма натуральных чисел – S.
  7. Конец алгоритма.

В схеме алгоритма решения задачи цифрами указаны номера элементов алгоритма. Номера элементов соответствуют номерам шагов словесного описания алгоритма.

Двойной порядок

Если головоломка имеет порядок двойной чётности, количество окон в каждой горизонтальной строчке или вертикальном столбце должно делиться на 4. Минимальной фигурой с такими свойствами будет таблица 4х4.

Решать магические квадраты двойной чётности следует по тому же алгоритму, что и остальные. Первый шаг при заполнении — вычисление магической константы. Формула применяется та же, что для расчёта других квадратов. Для фигуры со стороной 4 клетки значение константы будет равно 34.

Магический квадрат - виды, правила и примеры решения

В каждом углу основного поля выделяются промежуточные таблицы. Их размер должен быть равен n/4. Эти области обозначают буквами A, B, C, D, располагая их против хода часовой стрелки. Величина промежуточных фигур зависит от размера исходного квадрата:

Следующий этап — создание центрального промежуточного квадрата. Величина его стороны должна составлять n/2. Эта фигура не должна накладываться на периферические, но при этом соприкасаться с ними углами.

Далее в квадрат вносят цифры слева направо. Их допускается ставить только в свободные ячейки, которые входят в состав промежуточных областей. Например, при заполнении таблицы 4х4 порядок действий будет таким:

По этому же принципу цифрами заполняются оставшиеся клетки. Числа проставляются слева в порядке уменьшения. Если всё сделано верно, сумма всех чисел в любой строчке будет одинаковой.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector